Protein disorder studied by a synergy of experiment and simulation: Molecular dynamics

Ondrej Cehlár Institute of Neuroimmunology Slovak Academy of Sciences Bratislava

NGP-net winter school

09.01.2019

- Molecular dynamics (MD) simulations method
- State of the art of MD with IDP linear motifs and tau protein
- Results:
 - MD simulations performed with short wild type and mutated tau peptide 218-226 (T220A)

- Computational method calculates the time dependent behavior of a molecular system
- Molecular dynamics simulations use a classical Newtonian representation of atoms and molecules
- The forces between them are encoded in a force-field which contains all the chemical specificity
- Provides detailed information on the fluctuations and conformational changes of proteins and nucleic acids
- Able to identify transitions and metastable states formed on 0.1 10 μs timescale
- Need for high performance computing

Molecular dynamics

For the top 250 journals by impact factor, the number of publications per year that include the term "molecular dynamics" in either the title, abstract, or keywords was plotted. The analysis was performed via Web of Science in February 2018.

Hollingsworth&Dror 2018 Neuron

- MD program selection: GROMACS, NAMD, AMBER, CHARMM, Desmond, ...
- Method selection: clasical MD, enhanced sampling methods, coarse grained MD
- Force field selection
- Solvent modeling- explicit/implicit solvent

Molecular dynamics - workflow

Coarse-grained molecular dynamics

Lowering the level of protein representation from allatom to coarse-grained opens up new possibilities for studying protein systems

Smoothening of the energy landscape in a coarsegrained model as compared to an all-atom model

Coarse-grained molecular dynamics

Chaudhri 2013 J. Phys. Chem. B

All-atom versus coarse-grained representation in the MARTINI model

Kmiecik et al. 2016 Chem Reviews

Obtaining adequate sampling remains an issue in atomistic simulations in explicit solvent

Particularly true for IDPs - high conformational heterogeneity.

Schor et al. 2016 Biophys Rev

Replica exchange molecular dynamics

Temperature REMD- multiple copies (replicas) of the system are simulated in parallel, all at different temperatures

Exchanges between replicas adjacent in temperature take place

Metadynamics

The system is discouraged from visiting previously explored regions by a biasing potential.

This history-dependent biasing potential is built by periodically depositing Gaussians along the trajectory of the collective variable (CV)

Adaptations:

- Well tempered metadynamics Gaussian hight is scaled
- Bias-exchange metadynamics replicas biased in independent CVs

Force field

$$U(\vec{R}) = \sum_{\text{bonds}} K_b (b - b_0)^2 \qquad (1a)$$

$$+ \sum_{\text{angles}} K_{\theta} (\theta - \theta_0)^2 \qquad (1b)$$

$$+ \sum_{\text{dihedrals}} K_{\chi} (1 + \cos(n\chi - \delta)) \qquad (1c)$$

$$+ \sum_{\text{improper}} K_{\text{imp}} (\varphi - \varphi_0)^2 \qquad (1d)$$

$$+ \sum_{\text{nonbonded}} \left(\epsilon_{ij} \left[\left(\frac{R_{\min_{ij}}}{r_{ij}} \right)^{12} - \left(\frac{R_{\min_{ij}}}{r_{ij}} \right)^6 \right] \right) \qquad (1e)$$

$$+ \sum_{\text{nonbonded}} \frac{q_i q_j}{4\pi\epsilon_0 \epsilon r_{ij}} \qquad (1e)$$

pairs *i,j*

(1f)

Structural ensembles of intrinsically disordered proteins depend strongly on force field

CHARMM36m: an improved force field for folded and intrinsically disordered proteins

CHARMM36 (C36) protein FF was found to generate a high population of left-handed α -helix

		α_L probability α_L propensity Max. α_L			
System	Simulation	(%)	(%)	length	
FG-nucleoporin peptide	C36 C36m	$\begin{array}{c} 32\pm 6\\ 1.1\pm 0.3 \end{array}$	$\begin{array}{c} 22\pm2\\ 6.2\pm0.2 \end{array}$	14 aa 5 aa	
RS peptide	C36 C36m	$\begin{array}{c} 80\pm2\\ 1.8\pm0.5 \end{array}$	41 ± 1 5.5 ± 0.2	17 aa 5 aa	
IN	C36 C36m	64 ± 18 3 ± 2	14 ± 2 5.6 ± 0.5	7 aa 4 aa	
HEWL19 peptide	C36 C36m	$\begin{array}{c} 11\pm7\\ 0.5\pm0.4 \end{array}$	$\begin{array}{c} 12\pm2\\ 6.1\pm0.7 \end{array}$	8 aa 3 aa	

Developing a molecular dynamics force field for both folded and disordered protein states

Robustelli, Piana and D. E. Shaw 2018 PNAS

Linear motifs

- Interactions of well folded proteins involve larger surfaces discontinuous in sequence
- IDPs typically bind to targets using short (~6 residues) consecutive stretches of amino acid residues - linear motifs (LMs)
 - Increased hydrophobic content promoting local structure formation
 - Structural and conformational propensities

Cino et al. (2016) JPCB

Binding of disordered proteins to a protein hub

Studied system:

- Keap 1 well folded Kelch domain hub
- ✤ All of its identified disordered partners

Cino et al. (2013) Scientific Reports

Binding of disordered proteins to a protein hub

Elio A. Cino, Ryan C. Killoran, Mikko Karttunen & Wing-Yiu Choy (2013) Scientific Reports

Binding of disordered proteins to a protein hub

90% populated bound conformation throughout the simulation

Table 1 Thermodynam	nic parameters fo	or the binding of the peptide	es to the human Kelch	n domain °	
Protein	n ^b	K _d ^c (10 ⁻⁶ M)	∆H ^c (kcal/mol)	T∆S ^c (kcal/mol)	∆G ^c (kcal/mol)
NRF2 site 1 NRF2 site 1 E78P PALB2 PGAM5	1.08 0.99 1.01 1.07	$\begin{array}{c} 0.023 \pm 0.002 \\ \hline 0.007 \pm 0.001 \\ \hline 0.087 \pm 0.007 \\ \hline 0.23 \pm 0 \end{array}$	$ \begin{array}{r} -16.96 \pm 0.05 \\ -16.76 \pm 0.05 \\ -19.29 \pm 0.11 \\ 1 \end{array} $	-6.56 -5.64 -9.66	$-10.40 \pm 0.03 \\ -11.12 \pm 0.03 \\ -9.63 \pm 0.05$
WTX FAC1 p62 WTX pS286 PTMA iso 2 PTMA iso 1	1.04 0.99 0.97 0.98 1.05 1.07	$0.25 \pm 0 \\ 1.1 \pm 0 \\ 1.3 \pm 0 \\ 1.5 \pm 0 \\ 2.62 \pm 0 \\ 11.6 \pm 0 \\$	0.9 - 8.0 u - 8.0 - - 7.0 Hestigner - 7.0 Hestigner - 8.0 Hestigner - 8.0 Hestigner - 9.1 - - 0.1 - - 0.1 - - 0.1 - - 0.1 - - 0.1 -		
			MRF2 alle	COMP OF NIT FACTOR	52 PLAN MARS SIG BOLS

Elio A. Cino, Ryan C. Killoran, Mikko Karttunen & Wing-Yiu Choy (2013) Scientific Reports

REMD of tau repeat regions

H1

H1

H1

B2a

B1d

C5

C6

C7

C8

• Replica-exchange MD with K18 and K19

K18

Luo et al. (2014) J. Phys. Chem. Lett.

B1b

Cross-seeding barrier between Three- and Four-repeat Human Tau Proteins

How Does Hyperphopsphorylation Modulate Filament Structure and Stability?

Hyperphosphorylation of the two terminal domains decreases the attractive interactions among the N and C-terminus and repeat domain.

Xu et al. 2016 ACS Chem. Neurosci

The distinct structural preferences of tau protein repeat domains

C-shaped motif is only stable for R3–R4, while R1–R2 tends to be linear in shape Heparin can further stabilize the C-shaped R3–R4 motif, but not other repeats

Li 2018 Chem. Commun.

Tau protein phosphoepitope – AT8 antobody

Gandhi et al. (2015) Ang. Chemie

Malia et al. (2016) Proteins

Tau5 antibody epitope in the proline rich region of tau NEUROSCIENC

ax

Tau5 epitope

- lies in the tau-MT binding hotspot ²¹⁴SLPTPPTREPKKVAVVRT²³¹ (Mukrasch et al, 2009)
- Flanking tau regions contain number of AD-relevant phosphorylation sites pT231, pT235
- NMR detected significant propensity for transient secondary structures in this region (Mukrasch et al, 2009)
- The complex between Tau5 Fab and tau peptide crystallized at 1.6 Å resolution Cehlar et al. (2012) Acta F [PDB ID: 4TQE]

Structure of tau peptide in complex with Tau5 Fab

Conformation of tau peptide from proline rich region

Goal:

- Probe the stability of X-ray observed tau peptide conformation in solution
- Compare the interaction of WT and T220A mutated peptide by biophysical methods
- Probe the role of intrachain hydrogen bond (Thr²²⁰OG-Glu²²²N) forming ST-turn motif on the peptide stability by comparing the simulation results for wild type and T220A mutated peptide

Surface Plasmon Resonance - comparison of WT and mutated tau proteins

• T220A mutant of tau151-391 4R exhibits app. 370 times lower affinity for Tau5 than WT

- 1 μs supercomputer simulations of WT and T220A tau peptides ²¹⁸Ac-PPTREPKKV²²⁶-NH₂ starting from X-ray observed conformation in NAMD
- State of the art force field CHARMM36m (Huang et al. 2016 Nature Methods)
 - Improved accuracy in generating polypeptide backbone conformational ensembles for intrinsically disordered peptides and proteins
 - > Sampling of α_{L} helical conformations in IDP ensembles is significantly lower compared to previous versions

Microsecond MD simulations of tau peptides

RMSD

RMSD

Simulations starting from X-ray independent conformation (produced by simulated annealing protocol – 1 ns heating up, 4 ns at 450 K, 2 ns cooling down, 3 ns at 300 K

1.5

23

Cluster analysis from dPCA WT

Cluster analysis from dPCA T220A

Conclusion:

- The conformation of tau peptide is stabilized with intrachain hydrogen bond throughout the simulation
- The WT peptide occupies the bound-like conformation (RMSD < 0.6 Å) 3.6 times more than T220A mutated tau peptide

• Slovak infrastructure for high performance computing

Rostislav Skrabana Radovan Dvorsky

Grant support:

- Slovak Research and Development Agency No. LPP-0038-09
- VEGA grant 2/0177/15.

Thank you for attention

