

NPG-net Winter School

A primer on structural proteomics: MS-basics, cross-linking, HDX, ion-mobility

Markus Hartl

MFPL Mass Spectrometry Facility, Vienna, Austria

Talk @ CEITEC, Brno, January 10, 2019

The purpose of this lecture

Explore the basics of mass spectrometry and get an idea of what it can do for you in terms of:

- Proteoform identification
- Structural information
- Protein dynamics

...and be honest about what the difficulties are.

What mass spectrometry is all about.

Analytical balances:

0.001 g to 1 g ± 0.0001 g

Mass spectrometers:

1E-24 g to 1E-19 g ± 1E-26 g

or

1 Da to 100.000 Da ± 0.01 Da

Why is that interesting?

- Identify or verify compounds by their discrete atomic mass.
- Quantify compounds
- Gain information on structure/sequence

 Target analytes: biomolecules (metabolites, oligonucleotides, peptides, proteins), synthetic chemicals, polymers, drugs, etc.

How does it work?

How does it work?

(a sector-field instrument as an example)

Time-of-flight analyzer

Adapted from Lennart Marten's Youtube video: https://www.youtube.com/watch?v=vXsotPtOdRY&t=2s

How does it work?

Many combinations many acronyms

Separation	lonisation	Mass Spectrometer type	
LC	ESI	TOF	LC-ESI-TOF
GC	(EI)	Quadrupole (Q)	GC-Quad
-	MALDI	TOF	MALDI-TOF
LC	(ESI)	Triple-Quadrupole (QQQ)	LC-TripleQ
LC	(ESI)	Quadrupole-Orbitrap	LC-Q Exactive
••••			

Different instrumental setups for different questions.

The output: mass spectra

m/z

Zoom on signal at 792.8870 m/z

792.8870

<u>Isotope</u>		<u>Relative</u> <u>Atomic Mass</u>	<u>Isotopic</u> <u>Composition</u>
1 H	H 1	1.007 825 032 07(10)	0.999 885(70)
Γ	2	2.014 101 777 8(4)	0.000 115(70)
I	53	3.016 049 2777(25)	
6 0	C 12	12,000,000,0(0)	0.9893(8)
	13	13.003 354 8378(10)	0.0107(8)
	14	14.003 241 989(4)	
7 N	J 14	14.003 074 004 8(6)	0.996 36(20)
	15	15.000 108 898 2(7)	0.003 64(20)
8 C) 16	15.994 914 619 56(16)	0.997 57(16)
	17	16.999 131 70(12)	0.000 38(1)
	18	17.999 161 0(7)	0.002 05(14)
15 I	9 31	30.973 761 998 42(70)	1
16 \$	\$ 32	31.972 071 1744(14)	0.9499(26)
	33	32.971 458 9098(15)	0.0075(2)
	34	33.967 867 004(47)	0.0425(24)
	36	35.967 080 71(20)	0.0001(1)

Atomic Weights and Isotopic Compositions for All Elements

Source: NIST (National Institute of Standards and Technology), http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl

Defining mass

Defining mass (according to IUPAC, https://goldbook.iupac.org/):

Unified atomic mass unit:

- $1/_{12}$ of the mass of a carbon-12 atom in its ground state
- 1 u ≈ 1.660 5402 10 × 10 −27 kg
- Symbols: u or Da (for its equivalent dalton).

Relative atomic mass: mass of a discrete atomic particle or molecule expressed in unified atomic mass units.

Standard atomic weight (or molecular weight or average mass): the weighted average of the masses of the naturally occurring isotopes. For example one carbon atom:

$$\frac{(98.8\% * 12.0 + 1.1\% * 13,003355)}{100\%} = 12.011$$

Standard atomic weight

	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
	57	58	59	60	61	62	63	64	65	66	67	68	69	70
*lanthanoids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**actinoids	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Example 1:

Atomic Weights and Isotopic Compositions for All Elements

Isotop	<u>Relative</u> <u>Isotope Atomic Mass</u>		<u>Isotopic</u> Composition	<u>Standard</u> <u>Atomic Weight</u>	Notes	
1 H	1	1.007 825 032 07(10)	0.999 885(70)	[1.007 84, 1.008 11]	m	
D	2	2.014 101 777 8(4)	0.000 115(70)			
Т	3	3.016 049 2777(25)				
2 He	3	3.016 029 3191(26)	0.000 001 34(3)	4.002 602(2)	g,r	
	4	4.002 603 254 15(6)	0.999 998 66(3)			
3 Li	6	6.015 122 795(16)	0.0759(4)	[6.938, 6.997]	m	
	7	7.016 004 55(8)	0.9241(4)			
4 Be	9	9.012 182 2(4)	1.0000	9.012 1831(5)		
5 B	10	10.012 937 0(4)	0.199(7)	[10.806, 10.821]	m	
	11	11.009 305 4(4)	0.801(7)			
6 C	12	12.000 000 0(0)	0.9893(8)	[12.0096, 12.0116]		
	13	13.003 354 8378(10)	0.0107(8)			
	14	14.003 241 989(4)				
7 N	14	14.003 074 004 8(6)	0.996 36(20)	[14.006 43, 14.007 28]		
	15	15.000 108 898 2(7)	0.003 64(20)			
8 O	16	15.994 914 619 56(16)	0.997 57(16)	[15.999 03, 15.999 77]		
	17	16.999 131 70(12)	0.000 38(1)			
	18	17.999 161 0(7)	0.002 05(14)			

Glycine:

Monoisotopic: 75.03203 u Atomic weight: 75.06720 u Nominal mass: 75 u

Source: National Institute of Standards and Technology (NIST), http://www.nist.gov/pml/data/comp.cfm

Example 1:

Example 2: a peptide

Simulated spectrum

LVNELTEFAK +H2O: C53 H86 N12 O17 p(gss, s/p:40) Chrg...

Example 3: a protein

The basic idea

Bovine serum albumin 69293 Da Isotopic, average? How accurately?

What is the charge of a protein in electrospray ionisation (ESI)?

Charge envelopes in ESI: measuring m/z

ESI-TOF spectrum of intact BSA

Theoretical uncharged spectrum

ESI-TOF spectrum of intact BSA

Intact proteins >30 kDa usually determined as average mass

Using deconvolution algorithms

Take-home message

- Mass spectra depict m/z
- Proteins are usually multiply charged and display several charge states in ESI
- Proteins >30 kDa are usually determined as average mass
- Spectrum displaying several charge states needs to be deconvoluted to yield the noncharged average mass of the protein.

When the results do not match...

- ESI-TOF: 66428.8 Da
- Calc.: 69293.4 Da

>sp|P02769|ALBU_BOVIN Serum albumin

MKWVTFISLLLLFSSAYSRGVFRRDTHKSEIAHRFKDLGEEHFKGLVLIAFSQYLQQCPF DEHVKLVNELTEFAKTCVADESHAGCEKSLHTLFGDELCKVASLRETYGDMADCCEKQEP ERNECFLSHKDDSPDLPKLKPDPNTLCDEFKADEKKFWGKYLYEIARRHPYFYAPELLYY ANKYNGVFQECCQAEDKGACLLPKIETMREKVLASSARQRLRCASIQKFGERALKAWSVA RLSQKFPKAEFVEVTKLVTDLTKVHKECCHGDLLECADDRADLAKYICDNQDTISSKLKE CCDKPLLEKSHCIAEVEKDAIPENLPPLTADFAEDKDVCKNYQEAKDAFLGSFLYEYSRR HPEYAVSVLLRLAKEYEATLEECCAKDDPHACYSTVFDKLKHLVDEPQNLIKQNCDQFEK LGEYGFQNALIVRYTRKVPQVSTPTLVEVSRSLGKVGTRCCTKPESERMPCTEDYLSLIL NRLCVLHEKTPVSEKVTKCCTESLVNRRPCFSALTPDETYVPKAFDEKLFTFHADICTLP DTEKQIKKQTALVELLKHKPKATEEQLKTVMENFVAFVDKCCAADDKEACFAVEGPKLVV STQTALA

Protein processing

>sp|P02769|ALBU BOVIN Serum albumin

MKWVTFISLLLLFSSAYSRGVFRRDTHKSEIAHRFKDLGEEHFKGLVLIAFSQYLQQCPF DEHVKLVNELTEFAKTCVADESHAGCEKSLHTLFGDELCKVASLRETYGDMADCCEKQEP ERNECFLSHKDDSPDLPKLKPDPNTLCDEFKADEKKFWGKYLYEIARRHPYFYAPELLYY ANKYNGVFQECCQAEDKGACLLPKIETMREKVLASSARQRLRCASIQKFGERALKAWSVA RLSQKFPKAEFVEVTKLVTDLTKVHKECCHGDLLECADDRADLAKYICDNQDTISSKLKE CCDKPLLEKSHCIAEVEKDAIPENLPPLTADFAEDKDVCKNYQEAKDAFLGSFLYEYSRR HPEYAVSVLLRLAKEYEATLEECCAKDDPHACYSTVFDKLKHLVDEPQNLIKQNCDQFEK LGEYGFQNALIVRYTRKVPQVSTPTLVEVSRSLGKVGTRCCTKPESERMPCTEDYLSLIL NRLCVLHEKTPVSEKVTKCCTESLVNRRPCFSALTPDETYVPKAFDEKLFTFHADICTLP DTEKQIKKQTALVELLKHKPKATEEQLKTVMENFVAFVDKCCAADDKEACFAVEGPKLVV STQTALA

69293.41 Da full chain 66432.96 Da mature chain (reduced state)

Plus:

- 17 disulfide bonds, 1 free –SH
- 12 other PTMs (Phospho, succinyl)
- Dimerizes
- Binds water, Ca, Na, K, Zn, fatty acids, hormones, drugs, etc.
- Chemical modifications

Interpreting the unknowns

-4 Da, not fully reduced (disulfide bonds)?

Sometimes nothing works

The limits of this idea?

Intact mass analysis limited by:

- Complex mixtures of unknown composition
- Analytes with isobaric mass
- Unknown modifications or processing of analytes
- Technical issues with biomolecules

The "LC" in LC-MS

LC = liquid chromatography

Human rhinovirus

Intact mass analysis limited by:

- Complex mixtures of unknown composition
- Analytes with isobaric mass
- Unknown modifications or processing of analytes
- Technical issues with biomolecules

Sometimes one mass is not specific enough

Sometimes one mass is not specific enough

ISGGDALQSCVDR1320.4 DaDVCSQLADGGSIR1320.4 DaIpSGGDALQSCVDR1400.4 DaISGGDALQpSCVDR1400.4 Da

No information about:

- positions of amino acids
- Position of post-translational modifications

Intact mass analysis limited by:

- Complex mixtures of unknown composition
- Analytes with isobaric mass
- Unknown modifications or processing of analytes
- Technical issues with biomolecules

Generate more & specific information

A basic mass spectrometer

A basic mass spectrometer

Generating more & specific information: The MS/MS approach

A collision cell

Mapping fragments to a sequence

Query	Start - End	Observed	Mr (expt)	Mr(calc)	ppm M	Score	Expect	Rank	U	Peptide
<u>12</u>	2 - 41	4631.2100	4630.2027	4630.1915	2.42 0	15	1.2e+002	1	U	M.SHHWGYGKHNGPEHWHKDFPIANGERQSPVDIDTKAVVQD.P + Acetyl (N-term)
ef 61	180 - 260	9216.9194	9215.9122	9215.8929	2.09 0	280	4.9e-025	1	U	D.PGSLLPNVLDYWTYPGSLTTPPLLESVTWIVLKEPISVSSOMLKFRTLNFNAEGEPELLMLANWRPAOPLKNROVRGFPK
ef58	185 - 260	8749.6395	8748.6322	8748.6185	1.56 0	268	7.9e-024	1	υ	L.PNVLDYWTYPGSLTTPPLLESVTWIVLKEPISVSSQQMLKFRTLNFNAEGEPELLMLANWRPAQPLKNRQVRGFPK
ef 52	189 - 260	8326.3895	8325.3822	8325.3703	1.42 0	240	6.7e-021	1	υ	L.DYWTYPGSLTTPPLLESVTWIVLKEPISVSSQQMLKFRTLNFNAEGEPELLMLANWRPAQPLKNRQVRGFPK
ef 49	190 - 260	8211.3695	8210.3622	8210.3434	2.29 0	232	3.5e-020	1	υ	D.YWTYPGSLTTPPLLESVTWIVLKEPISVSSQQMLKFRTLNFNAEGEPELLMLANWRPAQPLKNRQVRGFPK
ef 46	191 - 260	8048.2995	8047.2922	8047.2801	1.51 0	228	8.6e-020	1	υ	Y.WTYPGSLTTPPLLESVTWIVLKEPISVSSQQMLKFRTLNFNAEGEPELLMLANWRPAQPLKNRQVRGFPK
e ¹ 42	192 - 260	7862.2194	7861.2122	7861.2007	1.45 0	227	7.8e-020	1	υ	W.TYPGSLTTPPLLESVTWIVLKEPISVSSQCMLKFRTLNFNAEGEPELLMLANWRPAQPLKNRQVRGFPK
മ്37	193 - 260	7761.1794	7760.1722	7760.1531	2.46 0	222	2.4e-019	1	υ	T.YPGSLTTPPLLESVTWIVLKEPISVSSQMLKFRTLNFNAEGEPELLMLANWRPAQPLKNRQVRGFPK
z 1 29	194 - 260	7598.1094	7597.1022	7597.0897	1.64 0	222	2.1e-019	1	υ	Y.PGSLTTPPLLESVTWIVLKEPISVSSOOMLKERTLNENAEGEPELLMLANWRPAOPLKNROVRGEPK
d 25	195 - 260	7501.0594	7500.0522	7500.0370	2.03 0	204	1.6e-017	1	υ	P.GSLTTPPLLESVTWIVLKEPISVSSQQMLKFRTLNFNAEGEPELLMLANWRPAQPLKNRQVRGFPK
d 22	196 - 260	7444.0295	7443.0222	7443.0155	0.90 0	189	4.3e-016	1	υ	G.SLTTPPLLESVTWIVLKEPISVSSQQMLKFRTLNFNAEGEPELLMLANWRPAQPLKNRQVRGFPK
d 19	197 - 260	7356.9995	7355.9922	7355.9835	1.18 0	183	1.6e-015	1	υ	S.LTTPPLLESVTWIVLKEPISVSSQQMLKFRTLNFNAEGEPELLMLANWRPAQPLKNRQVRGFPK
ef16	199 - 260	7142.8695	7141.8622	7141.8517	1.46 0	166	8.9e-014	1	υ	T.TPPLLESVTWIVLKEPISVSSOOMLKFRTLNENAEGEPELLMLANWRPAOPLKNROVRGFPK
ef13	200 - 260	7041.8295	7040.8222	7040.8040	2.57 0	160	3.3e-013	1	U	T. PPLLESVTWIVLKEPISVSSOMLKFRTLNFNAEGEPELLMLANWRPAOPLKNROVRGFPK
ef10	210 - 260	5906.1894	5905.1822	5905.1763	0.99 0	87	8.3e-006	1	U	I.VLKEPISVSSQCMLKFRTLNFNAEGEPELLMLANWRPAQPLKNRCVRGFPK
eľ7	213 - 260	5565.9495	5564.9422	5564.9289	2.39 0	70	0.00053	1	U	K.EPISVSSOMLKERTLNENAEGEPELLMLANWRPAOPLKNROVRGEPK
ef 4	214 - 260	5436.9095	5435.9022	5435.8863	2.92 0	61	0.0037	1	U	E. PISVSSQMLKFRTLNFNAEGEPELLMLANWRPAOPLKNRQVRGFPK

Protein sequence coverage: 46%

Matched peptides shown in **bold red**.

- 1 MSHHWGYGKH NGPEHWHKDF PIANGERQSP VDIDTKAVVQ DPALKPLALV
- 51 YGEATSRRMV NNGHSFNVEY DDSQDKAVLK DGPLTGTYRL VQFHFHWGSS
- 101 DDQGSEHTVD RKKYAAELHL VHWNTKYGDF GTAAQQPDGL AVVGVFLKVG
- 151 DANPALOKVL DALDSIKTKG KSTDFPNFDP GSLLPNVLDY WTYPGSLTTP
- 201 PLLESVTWIV LKEPISVSSQ QMLKFRTLNF NAEGEPELLM LANWRPAQPL

Database dependent!

251 KNROVRGFPK

Top-down proteomics

"Bottom-up vs top down" by MagnusPalmblad - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons

Drawbacks of top-down proteomics:

- Chromatographic separation of proteins is difficult
- Complex samples are very challenging (charge envelopes, overlapping signals)
- Analysis limited to proteins of 100 kDa max. (for complex mixtures)
- Data analysis algorithms not mature

What's the alternative?

The alternative: break proteins into something more manageable before LC-MS-MS

Where does trypsin cut?

Why not 100% coverage?

Digestion of BSA with trypsin: theoretically 75% coverage

10	20	30	40	50	60	
dthkseiahr	fkDLGEEHFK	GLVLIAFSQY	LQQCPFDEHV	KLVNELTEFA	KTCVADESHA	
70	80	90	100	110	120	
GCEKSLHTLF	GDELCKvas1	rETYGDMADC	CEKqeperNE	CFLSHKDDSP	DLPKLKPDPN	
130	140	150	160	170	180	
TLCDEFKade	kkfwgkYLYE	IARTHPYFYA	PELLYYANKY	NGVFQECCQA	EDKgacllpk	
190	200	210	220	230	240	
ietmrekvla	ssarqrlrca	siqkfgeral	kawsvarlsq	kfpkAEFVEV	TKLVTDLTKV	
250	260	27 <u>0</u>	280	290	300	
hkECCHGDLL	ECADDRadla	kYICDNQDTI	SSK1kECCDK	PLLEKSHCIA	EVEKDAIPEN	
31 <u>0</u>	32 <u>0</u>	33 <u>0</u>	34 <u>0</u>	35 <u>0</u>	360	
LPPLTADFAE	DKdvckNYQE	AKDAFLGSFL	YEYSRrHPEY	AVSVLLRlak	EYEATLEECC	
37 <u>0</u>	380	39 <u>0</u>	40 <u>0</u>	41 <u>0</u>	420	
AKDDPHACYS	TVFDK1kHLV	DEPQNLIKQN	CDQFEKLGEY	GFQNALIVRY	trkVPQVSTP	
430	44 <u>0</u>	450	46 <u>0</u>	47 <u>0</u>	480	
TLVEVSRslg	kvgtrCCTKP	ESERMPCTED	YLSLILNRLC	VLHEKtpvse	kvtkCCTESL	
	500	54.0	500	500	5.4.0	
490	500	510	520	530	540	
VNRRPCFSAL	TPDETYVPKa	IGERTLILHU	DICTLPDTEK	di k kõlat AFAE	LLKNKPKATE	
	5.00	5.30	500			
550	560	570	580 CDWI UNICTOT			
LULKIVMENE	varvukccaa	GAKEACFAVE	GERLVVDIQI	ALA		

Bottom-up vs. top-down proteomics

"Bottom-up vs top down" by MagnusPalmblad - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons

The advantage of bottom-up

- Easier chromatography and handling of peptides
- Simpler signals, with accurate monoisotopic masses:

Peptide mass is not enough

ISGGDALQSCVDR1320.4 DaDVCSQLADGGSIR1320.4 DaIpSGGDALQSCVDR1400.4 DaISGGDALQpSCVDR1400.4 Da

No information about:

- positions of amino acids
- Position of post-translational modifications

More & specific info: the MS/MS approach

Peptide fragmentation (CID)

The basic idea of a DB searches

Database of protein sequences:

The basic idea of a DB searches

Acquired raw data

Mass database Match measured spectra to theoretical spectra

Coverage?

How many proteins can you detect?

- In a 2 h run on the newest generation instrument:
- 25.000 peptides (>50.000 spectra)
- >4.000 proteins (depending on organism)
- at 1% FDR!

Sample requirement: 2 µg peptide sample Sample preparation time: 6h plus digest time

Coverage at protein level?

- Almost never 100%, typically 1-80%
- Modifications with low stoichiometry lost

10	20	30	40	50	60
dthkseiahr	fkDLGEEHFK	GLVLIAFSQY	LQQCPFDEHV	KLVNELTEFA	KTCVADESHA
70	80	90	10 <u>0</u>	11 <u>0</u>	120
GCEKSLHTLF	GDELCKvasl	rETYGDMADC	CEKqeperNE	CFLSHKDDSP	DLPKLKPDPN
13 <u>0</u>	14 <u>0</u>	15 <u>0</u>	16 <u>0</u>	17 <u>0</u>	18 <u>0</u>
TLCDEFKade	kkfwgkYLYE	IARTHPYFYA	PELLYYANKY	NGVFQECCQA	EDKgacllpk
100	200	210	220	220	240
190	200	210	220	230	240
lecmrekvia	ssarqrirca	sidkidelai	Kawsvarisq	KIDKALLALA	IKLVIDLIKV
250	260	270	280	290	300
hkECCHGDLL	FCADDRadia	*YTCDNODTT	SSKINECCDK	PLLEKSHCTA	EVERDATEEN
Introduction	LonDbraata	Allounguil	DERIALOODI	1 DDDRDRDIN	DIDRUH
310	320	330	340	350	360
LPPLTADFAE	DKdvckNYOE	AKDAFLGSFL	YEYSRrHPEY	AVSVLLRlak	EYEATLEECC
	~				
370	380	390	400	410	420
AKDDPHACYS	TVFDKlkHLV	DEPQNLIKQN	CDQFEKLGEY	GFQNALIVRY	trkVPQVSTP
43 <u>0</u>	44 <u>0</u>	45 <u>0</u>	460	47 <u>0</u>	480
TLVEVSRslg	kvgtrCCTKP	ESERMPCTED	YLSLILNRLC	VLHEKtpvse	kvtkCCTESL
49 <u>0</u>	500	51 <u>0</u>	520	53 <u>0</u>	54 <u>0</u>
VNRRPCFSAL	TPDETYVPKa	fdekLFTFHA	DICTLPDTEK	qikkQTALVE	LLKhkpkATE
550	560	570	580		
LOTKIANENE	VAFVDKCCaa	QUKEACLAVE	GPKLVVSTQT	ALA	

Bottom-up vs. top-down proteomics vs. intact mass analysis

"Bottom-up vs top down" by MagnusPalmblad - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons

What is this all useful for?

Applications in proteomics

Characterizing structure & interactions with MS

- Identify interaction partners (e.g. Affinity purification MS, BioID, etc.)
- Crosslinking MS
- Hydrogen-deuterium exchange (HDX)
- Native mass spectrometry

Why crosslinking?

- High-resolution structural tools not always applicable, especially for higher order protein complexes or flexible regions (e.g. IDPs)
- XL-MS is a complementary low-resolution tool
- XL-MS monitors proteins in solution
- What you can gain:
 - Distance constraints
 - Identification of interaction partners
 - Protein complex and network analysis

The principle of XL-MS

Identify cross-linked peptides ⇒ Distance constraints for structural modeling Data processing & evaluation

LC-MS/MS analysis

Illustration (modified): Evelyn Rampler, IMP

The principle of XL-MS

Identify cross-linked peptides ⇒ Distance constraints for structural modeling Data processing & evaluation

LC-MS/MS analysis

Illustration (modified): Evelyn Rampler, IMP

The principle of XL-MS

LC-MS/MS analysis

Illustration (modified): Evelyn Rampler, IMP
The principle of XL-MS

Illustration (modified): Evelyn Rampler, IMP

The principle of XL-MS

Identify cross-linked peptides ⇒ Distance constraints for structural modeling Data processing & evaluation

LC-MS/MS analysis

Illustration (modified): Evelyn Rampler, IMP

The principle of XL-MS

LC-MS/MS analysis

Illustration (modified): Evelyn Rampler, IMP

Cross-linked peptide spectra are more complex

Choose your weapons wisely & protein-specific

Illustration (modified): Evelyn Rampler, IMP

LC-MS/MS analysis

Crosslinker chemistry

Types

- NH₂-reactive crosslinker
- Sulfhydryl-reactive crosslinker
- Photoreactive crosslinkers
- COOH-reactive crosslinker

Design:

- Homobifunctional
- Heterobifunctional
- Zero-length

According to:

A. Sinz, Journal of Mass Spectrometry, 38:1225-1237, 2010

ve crosslinker

Protein

NH₂

Slide kindly provided by Evelyn Rampler

Crosslinkers with different lengths

P	rotein NH_2 Spacer	
Crosslinker	Chemical name	spacer
DSS	Di(succinimidyl)suberate	11.4 Å
BS2G	Bis(sulfosuccinimidyl)glutarate	7.7 Å
BS2G _{d0/d6}	Di(sulfosuccinimidyl)glutarate	7.7 Å
EDC	1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride	0 Å

Slide kindly provided by Evelyn Rampler

Example results: BSA

Example results: RNA Polymerase II and TFIIF

From: Chen, Z. A., Jawhari, A., Fischer, L., Buchen, C., Tahir, S., Kamenski, T., ... Rappsilber, J. (2010). Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. *The EMBO Journal*, 29(4), 717–726. doi:10.1038/emboj.2009.401

Binding of TFIIF to RNA Polymerase II

From: Chen, Z. A., Jawhari, A., Fischer, L., Buchen, C., Tahir, S., Kamenski, T., ... Rappsilber, J. (2010). Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. *The EMBO Journal*, 29(4), 717–726. doi:10.1038/emboj.2009.401

Characterizing structure & interactions with MS

- Identify interaction partners (e.g. Affinity purification MS, BioID, etc.)
- Crosslinking MS
- Hydrogen-deuterium exchange (HDX)
- Native mass spectrometry

H/D Exchange

- In a solution of D₂O amidehydrogens can be exchanged against D
- Depends on:
 - Hydrogen bonds
 - Accessibility of H -> structure!
 - pH of solution
 - temperature

H/D Exchange MS

H/D Exchange

©2013 David Weis

http://mvsc.ku.edu/content/hydrogen-deuterium-exchange-mass-spectrometry

Amino acid specific information

From: Measuring the Hydrogen/Deuterium Exchange of Proteins at High Spatial Resolution by Mass Spectrometry: Overcoming Gas-Phase Hydrogen/Deuterium Scrambling

Kasper D. Rand, Martin Zehl, and Thomas J. D. Jørgensen Accounts of Chemical Research **2014** 47 (10), 3018-3027 DOI: 10.1021/ar500194w

H/D Exchange applications

Provides structural information on:

- Large proteins
- Protein-ligand interaction
- Protein complexes
- Viral particles

Provides information on protein dynamics and conformational state

Differentiate folded and disordered regions

From: Balasubramaniam & Komives, Biochim Biophys Acta. 2013, 1834(6): 1202–1209.

H/D exchange time series

Example:

Diphteria toxin enters cells via endosomal pathway and undergoes a pH dependent conformational change

900 s

Deuterium uptake %

10-20 20-30 30-40 40-50 50-60

3600 s

60-70 70-100

From: Hydrogen–Deuterium Exchange and Mass Spectrometry Reveal the pH-Dependent Conformational Changes of Diphtheria Toxin T Domain Jing Li, Mykola V. Rodnin, Alexey S. Ladokhin, and Michael L. Gross *Biochemistry* **2014** *53* (43), 6849-6856

360 s

0-5

5-10

No Data

Deuterium uptake difference %

From: Hydrogen–Deuterium Exchange and Mass Spectrometry Reveal the pH-Dependent Conformational Changes of Diphtheria Toxin T Domain Jing Li, Mykola V. Rodnin, Alexey S. Ladokhin, and Michael L. Gross *Biochemistry* **2014** *53* (43), 6849-6856

Requirements for HDX

- Pure protein preparations,
- a special LC-MS system that allows digest and sepration at low temperatures
- specialised software
- and an experienced application specialist

Back to the start: intact native MS

MS of intact proteins under native conditions (e.g. in ammonium acetate at physiological pH)

(a–d) Native mass spectra of IgG antibody
(a), bacteriophage HK97 capsid pentamers and hexamers (b), yeast 20S proteasome
(c) and *E. coli* GroEL (d).

Nat Methods. 2012 Nov;9(11):1084-6. doi: 10.1038/nmeth.2208. Epub 2012 Oct 14.

High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies.

Rose RJ1, Damoc E, Denisov E, Makarov A, Heck AJ.

Native MS

- Buffers that retain native structure (?)
- Samples: min 20 microliters of a 1-5 mg/mL solution
- Mainly manual acquisition

Native MS to the extreme: intact ribosomes

Waterbeemd et al., Nature Methods volume 14, pages 283–286 (2017)

Native MS to the extreme: complexes ejected from native membranes

Fig. 3 Intact mitochondria and inner membranes yield complexes I, III, IV, and V, as well as ANT-1 (adenine nucleotide translocase 1) with palmitate transport through the dimer interface.

Dror S. Chorev et al. Science 2018;362:829-834 Published by AAAS

Summary: Protein mass spectrometry workflow

Summary:

- Basic principles of MS
- Intact vs. Top-down vs. Bottom-up
- MS/MS
- Sequencing & Database searching
- Applications: XLMS, HDX, native MS

Thanks!